Modelling and Formal Verification of Neuronal Archetypes Coupling

Elisabetta De Maria^{*1}, Thibaud L'yvonnet¹, Alexandre Muzy¹, Franck Grammont², Daniel Gaffé³, and Annie Ressouche⁴

¹I3S – Université de Nice Sophia-Antipolis – France

²LJAD – Université de Nice Sophia-Antipolis – France

³LEAT – Université de Nice Sophia-Antipolis – France

⁴INRIA – Université de Nice Sophia-Antipolis – France

Résumé

There exists many ways to connect two, three or more neurons together to form different graphs. We call archetypes only the graphs whose properties can be associated with specific classes of

biologically relevant structures and behaviors. These archetypes are supposed to be the basis of typical instances of neuronal information processing. To model different representative archetypes

and express their temporal properties, we use a synchronous programming language dedicated to reactive systems (Lustre). The properties are automatically validated thanks to a model checker supporting data types (kind2). The language Lustre and the model checker kind2 are then exploited to investigate the behaviour of the composition of the presented archetypes.

*Intervenant