Slow-fast transitions to seizure states in the Wendling-Chauvel neural mass model

Mathieu Desroches* ${ }^{* 1}$, Olivier Faugeras ${ }^{2}$, and Martin Krupa ${ }^{3}$
${ }^{1}$ Inria Sophia Antipolis Méditerranée - MathNeuro team - 2004 route des Lucioles BP93 06902 Sophia Antipolis cedex, France
${ }^{2}$ Inria Sophia Antipolis Méditerranée - MathNeuro team - 2004 route des Lucioles BP93 06902 Sophia Antipolis cedex, France
${ }^{3}$ University College Cork - Department of Applied Mathematics Cork, Irlande

Résumé

We revisit the Wendling-Chauvel neural mass model by reducing it to eight ODEs and adding a differential equation that accounts for a dynamic evolution of the slow inhibitory synaptic gain. This allows to generate dynamic transitions in the resulting nine-dimensional model. The output of the extended model can be related to EEG patterns observed during epileptic seizure, in particular isolated pre-ictal spikes and low-voltage fast oscillations at seizure onset. We analyse the extended model using basic tools from slow-fast dynamical systems theory and relate the main transitions towards seizure states to torus canards, a type of solutions that has been shown to explain the spiking to bursting transition in many neural models. We find that the original ten-dimensional Wendling-Chauvel model can be reduced to eight dimensions, two variables being scaled versions of two other variables of the model. We then obtain a model with four PSP blocks, which is consistent with the block-diagrams typically presented to describe this model. Instead of varying the slow inhibitory synaptic gain parameter B quasi-statically, or just performing numerical bifurcation analysis in B as the structure of the fast subsystem of an hypothetical extended system, we construct a true slow dynamics for B, depending sensitively on the main PSP output of the model, Y0. Near fold bifurcation of limit cycles of the original model, the solution to the extended model performs fast low-amplitude oscillations close to both attracting and repelling branches of limit cycles, which is the signature of a torus canard phenomenon.

[^0]
[^0]: * Intervenant

